Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 27(4): 643-655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38424324

ABSTRACT

Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-ß1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-ß1 followed by COL6A1. Knockdown of TGF-ß1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-ß1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/metabolism , Transforming Growth Factor beta1 , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Drosophila , Extracellular Matrix/metabolism , Dipeptides/metabolism , DNA Repeat Expansion/genetics
2.
Lancet Neurol ; 22(11): 1048-1060, 2023 11.
Article in English | MEDLINE | ID: mdl-37863592

ABSTRACT

Neurodegenerative disorders, including Alzheimer's disease, are associated with microgliosis. Microglia have long been considered to have detrimental roles in Alzheimer's disease. However, functional analyses of genes encoding risk factors that are linked to late-onset Alzheimer's disease, and that are enriched or exclusively expressed in microglia, have revealed unexpected protective functions. One of the major risk genes for Alzheimer's disease is TREM2. Risk variants of TREM2 are loss-of-function mutations affecting chemotaxis, phagocytosis, lipid and energy metabolism, and survival and proliferation. Agonistic anti-TREM2 antibodies have been developed to boost these protective functions in patients with intact TREM2 alleles. Several anti-TREM2 antibodies are in early clinical trials, and current efforts aim to achieve more efficient transport of these antibodies across the blood-brain barrier. PET imaging could be used to monitor target engagement. Data from animal models, and biomarker studies in patients, further support a rationale for boosting TREM2 functions during the preclinical stage of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Animals , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Microglia/metabolism , Mutation , Antibodies/genetics , Antibodies/metabolism , Disease Models, Animal , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
3.
EMBO J ; 42(19): e113246, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37575021

ABSTRACT

Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aß oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aß oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aß-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.


Subject(s)
Alzheimer Disease , Humans , Mice , Animals , Alzheimer Disease/genetics , Microglia , Synapses , Disease Models, Animal , Amyloid beta-Peptides/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics
4.
Nat Neurosci ; 26(3): 406-415, 2023 03.
Article in English | MEDLINE | ID: mdl-36747024

ABSTRACT

Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-ß oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Microglia/metabolism , Osteopontin/metabolism , Phagocytes/metabolism , Macrophages/metabolism , Phagocytosis , Disease Models, Animal , Amyloid beta-Peptides/metabolism
5.
Neuron ; 110(21): 3458-3483, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36327895

ABSTRACT

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.


Subject(s)
Microglia
6.
Nat Neurosci ; 25(3): 306-316, 2022 03.
Article in English | MEDLINE | ID: mdl-35260865

ABSTRACT

A key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses. To address this issue, we present a rigorously validated protocol that preserves both in vivo transcriptional profiles and cell-type diversity and yield across tissue types and species. We also identify a similar signature in postmortem human brain single-nucleus RNA-sequencing datasets, and show that this signature is induced in freshly isolated human tissue by exposure to elevated temperatures ex vivo. Together, our results provide a methodological solution for preventing artifactual gene expression changes during fresh tissue digestion and a reference for future deeper analysis of the potential confounding states present in postmortem human samples.


Subject(s)
Neuroglia , Transcriptome , Brain , Humans , Microglia/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
7.
Wellcome Open Res ; 6: 194, 2021.
Article in English | MEDLINE | ID: mdl-34778569

ABSTRACT

Neuroimmunology in the broadest sense is the study of interactions between the nervous and the immune systems. These interactions play important roles in health from supporting neural development, homeostasis and plasticity to modifying behaviour. Neuroimmunology is increasingly recognised as a field with the potential to deliver a significant positive impact on human health and treatment for neurological and psychiatric disorders. Yet, translation to the clinic is hindered by fundamental knowledge gaps on the underlying mechanisms of action or the optimal timing of an intervention, and a lack of appropriate tools to visualise and modulate both systems. Here we propose ten key disease-agnostic research questions that, if addressed, could lead to significant progress within neuroimmunology in the short to medium term. We also discuss four cross-cutting themes to be considered when addressing each question: i) bi-directionality of neuroimmune interactions; ii) the biological context in which the questions are addressed (e.g. health vs disease vs across the lifespan); iii) tools and technologies required to fully answer the questions; and iv) translation into the clinic. We acknowledge that these ten questions cannot represent the full breadth of gaps in our understanding; rather they focus on areas which, if addressed, may have the most broad and immediate impacts. By defining these neuroimmunology priorities, we hope to unite existing and future research teams, who can make meaningful progress through a collaborative and cross-disciplinary effort.

8.
Fac Rev ; 10: 19, 2021.
Article in English | MEDLINE | ID: mdl-33718936

ABSTRACT

The innate immune system plays an integral role in the brain. Synaptic pruning, a fundamental process in developmental circuit refinement, is partially mediated by neuroimmune signalling at the synapse. In particular, microglia, the major tissue-resident macrophages of the brain, and the classical complement cascade, an innate immune pathway that aids in the clearance of unwanted material, have been implicated in mediating synapse elimination. Emerging data suggest that improper signalling of the innate immune pathway at the synapse leads to pathological synapse loss in age-related neurodegenerative diseases, including Alzheimer's disease. Now the key questions are whether synapses are targeted by complement and, if so, which synapses are vulnerable to elimination. Here, we review recent work implicating C1q, the initiator of the classical complement cascade, and surrounding glia as mediators of synapse loss. We examine how synapses could undergo apoptosis-like pathways in the Alzheimer brain, which may lead to the externalisation of phosphatidylserine on synapses. Finally, we discuss potential roles for microglia and astrocytes in this 'synaptic apoptosis'. Critical insight into neuroimmune regulatory pathways on synapses will be key to developing effective targets against pathological synapse loss in dementia.

9.
Dev Neurobiol ; 81(5): 507-523, 2021 07.
Article in English | MEDLINE | ID: mdl-32757416

ABSTRACT

Genetic data implicate microglia as central players in brain health and disease, urging the need to better understand what microglia do in the brain. Microglia are critical partners in neuronal wiring and function during development and disease. Emerging literature suggests that microglia have diverse functional roles, raising the intriguing question of which functions of microglia become impaired in disease to undermine proper neuronal function. It is also becoming increasingly clear that microglia exist in heterogeneous cell states. Microglial cell states appear context-dependent, that is, age, sex, location, and health of their microenvironment; these are further influenced by external signaling factors including gut microbiota and lipid metabolites. These data altogether suggest that microglia exist in functional clusters that impact, and are impacted by, surrounding neuronal microenvironment. However, we still lack understanding of how we can translate microglia cell states into function. Here, we summarize the state-of-the-art on the diverse functions of microglia in relation to neuronal health. Then, we discuss heterogeneity during developing, healthy adult and diseased brains, and whether this may be predetermined by origin and/or regulated by local milieu. Finally, we propose that it is critical to gain high-resolution functional discernment into microglia-neuron interactions while preserving the spatial architecture of the tissue. Such insight will reveal specific targets for biomarker and therapeutic development toward microglia-neuron crosstalk in disease.


Subject(s)
Microglia , Neurons , Brain/metabolism , Microglia/physiology , Neurons/metabolism , Signal Transduction
10.
Science ; 370(6512): 66-69, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33004513

ABSTRACT

Dementia is a rapidly rising global health crisis that silently disables families and ends lives and livelihoods around the world. To date, however, no early biomarkers or effective therapies exist. It is now clear that brain microglia are more than mere bystanders or amyloid phagocytes; they can act as governors of neuronal function and homeostasis in the adult brain. Here, we highlight the fundamental role of microglia as tissue-resident macrophages in neuronal health. Then, we suggest how chronic impairment in microglia-neuron cross-talk may secure the permanence of the failure of synaptic and neuronal function and health in Alzheimer's and Parkinson's diseases. Understanding how to assess and modulate microglia-neuron interactions critical for brain health will be key to developing effective therapies for dementia.


Subject(s)
Alzheimer Disease/pathology , Amyloid/metabolism , Macrophages/metabolism , Microglia/metabolism , Parkinson Disease/pathology , Synapses/pathology , Animals , Cell Communication , Humans , Mice , Neurons/metabolism , Synaptosomes/pathology , alpha-Synuclein/metabolism
11.
Trends Neurosci ; 43(10): 739-740, 2020 10.
Article in English | MEDLINE | ID: mdl-32863043

ABSTRACT

In a recent paper, Gratuze et al. demonstrated a putative neuroprotective role of a key Alzheimer risk variant, TREM2R47H, against tau-mediated neurodegeneration in a mouse model of tauopathy. This study highlights the context-dependent response of microglia, and proposes antagonistic roles of TREM2 in Aß- versus tau-mediated pathology.


Subject(s)
Alzheimer Disease , Gliosis , Animals , Disease Models, Animal , Membrane Glycoproteins , Mice , Microglia , Receptors, Immunologic
12.
Cell Metab ; 26(4): 590-591, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28978423

ABSTRACT

Microglia are the macrophages of the brain and play an important role in Alzheimer's disease (AD). In Cell, Ulland et al. (2017) recently reported that mutations in TREM2, a protein implicated in AD, disrupt microglial energy state and function, thus sabotaging the microglia's ability to defend the brain against amyloid plaques.


Subject(s)
Alzheimer Disease/genetics , Membrane Glycoproteins/genetics , Microglia/pathology , Receptors, Immunologic/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Gene Deletion , Gene Expression Regulation , Humans , Membrane Glycoproteins/metabolism , Mice , Microglia/metabolism , Mutation , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Receptors, Immunologic/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
13.
Sci Transl Med ; 9(392)2017 05 31.
Article in English | MEDLINE | ID: mdl-28566429

ABSTRACT

The complement cascade not only is an innate immune response that enables removal of pathogens but also plays an important role in microglia-mediated synaptic refinement during brain development. Complement C3 is elevated in Alzheimer's disease (AD), colocalizing with neuritic plaques, and appears to contribute to clearance of Aß by microglia in the brain. Previously, we reported that C3-deficient C57BL/6 mice were protected against age-related and region-specific loss of hippocampal synapses and cognitive decline during normal aging. Furthermore, blocking complement and downstream iC3b/CR3 signaling rescued synapses from Aß-induced loss in young AD mice before amyloid plaques had accumulated. We assessed the effects of C3 deficiency in aged, plaque-rich APPswe/PS1dE9 transgenic mice (APP/PS1;C3 KO). We examined the effects of C3 deficiency on cognition, Aß plaque deposition, and plaque-related neuropathology at later AD stages in these mice. We found that 16-month-old APP/PS1;C3 KO mice performed better on a learning and memory task than did APP/PS1 mice, despite having more cerebral Aß plaques. Aged APP/PS1;C3 KO mice also had fewer microglia and astrocytes localized within the center of hippocampal Aß plaques compared to APP/PS1 mice. Several proinflammatory cytokines in the brain were reduced in APP/PS1;C3 KO mice, consistent with an altered microglial phenotype. C3 deficiency also protected APP/PS1 mice against age-dependent loss of synapses and neurons. Our study suggests that complement C3 or downstream complement activation fragments may play an important role in Aß plaque pathology, glial responses to plaques, and neuronal dysfunction in the brains of APP/PS1 mice.


Subject(s)
Aging/pathology , Amyloid beta-Protein Precursor/metabolism , Complement C3/deficiency , Nerve Degeneration/pathology , Nerve Degeneration/prevention & control , Plaque, Amyloid/pathology , Presenilin-1/metabolism , Animals , Astrocytes/pathology , Cognitive Dysfunction , Cytokines/metabolism , Gliosis/pathology , Hippocampus/metabolism , Hippocampus/pathology , Mice, Inbred C57BL , Mice, Knockout , Plaque, Amyloid/metabolism , Solubility , Synapses/metabolism , Synapses/pathology
14.
Methods Mol Biol ; 1538: 155-167, 2017.
Article in English | MEDLINE | ID: mdl-27943190

ABSTRACT

The neuronal synapse is a primary building block of the nervous system to which alterations in structure or function can result in numerous pathologies. Studying its formation and elimination is the key to understanding how brains are wired during development, maintained throughout adulthood plasticity, and disrupted during disease. However, due to its diffraction-limited size, investigations of the synaptic junction at the structural level have primarily relied on labor-intensive electron microscopy or ultra-thin section array tomography. Recent advances in the field of super-resolution light microscopy now allow researchers to image synapses and associated molecules with high-spatial resolution, while taking advantage of the key characteristics of light microscopy, such as easy sample preparation and the ability to detect multiple targets with molecular specificity. One such super-resolution technique, Structured Illumination Microscopy (SIM), has emerged as an attractive method to examine synapse structure and function. SIM requires little change in standard light microscopy sample preparation steps, but results in a twofold improvement in both lateral and axial resolutions compared to widefield microscopy. The following protocol outlines a method for imaging synaptic structures at resolutions capable of resolving the intricacies of these neuronal connections.


Subject(s)
Microscopy/methods , Neurons/cytology , Neurons/physiology , Synapses/physiology , Animals , Brain/cytology , Brain/diagnostic imaging , Brain/metabolism , Imaging, Three-Dimensional/methods , Mice
15.
Dev Cell ; 38(2): 126-8, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27459063

ABSTRACT

Microglia are the primary phagocytes of the central nervous system. They eliminate excess functional connections between neurons to sculpt neuronal circuits during development and throughout adulthood. Understanding how microglia recognize and prune synapses during development is providing insight into synapse loss and dysfunction in disease.


Subject(s)
Brain/physiology , Microglia/physiology , Neurons/physiology , Phagocytosis/physiology , Synapses/physiology , Animals , Humans
16.
Science ; 352(6286): 712-716, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27033548

ABSTRACT

Synapse loss in Alzheimer's disease (AD) correlates with cognitive decline. Involvement of microglia and complement in AD has been attributed to neuroinflammation, prominent late in disease. Here we show in mouse models that complement and microglia mediate synaptic loss early in AD. C1q, the initiating protein of the classical complement cascade, is increased and associated with synapses before overt plaque deposition. Inhibition of C1q, C3, or the microglial complement receptor CR3 reduces the number of phagocytic microglia, as well as the extent of early synapse loss. C1q is necessary for the toxic effects of soluble ß-amyloid (Aß) oligomers on synapses and hippocampal long-term potentiation. Finally, microglia in adult brains engulf synaptic material in a CR3-dependent process when exposed to soluble Aß oligomers. Together, these findings suggest that the complement-dependent pathway and microglia that prune excess synapses in development are inappropriately activated and mediate synapse loss in AD.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/pathology , Complement C1q/immunology , Microglia/immunology , Phagocytosis/immunology , Synapses/immunology , Synapses/pathology , Amyloid beta-Peptides/immunology , Animals , CA1 Region, Hippocampal/immunology , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Cognition Disorders/immunology , Cognition Disorders/pathology , Complement C1q/genetics , Complement Pathway, Classical/immunology , Disease Models, Animal , Disks Large Homolog 4 Protein , Guanylate Kinases/immunology , Long-Term Potentiation , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/immunology , Membrane Proteins/immunology , Mice , Mice, Knockout , Plaque, Amyloid/immunology , Synaptophysin/immunology , Up-Regulation
17.
Curr Opin Neurobiol ; 36: 128-34, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26745839

ABSTRACT

Recent genome-wide association studies implicate microglia in Alzheimer's disease (AD) pathogenesis; however, their biological significance remains poorly understood. Synapse loss is a significant correlate of cognitive decline that serves as a critical hallmark of AD and other neurodegenerative diseases; however, mechanisms underlying synaptic vulnerability remain elusive. Emerging research on microglia function in the healthy brain is providing new insight into fundamental roles of microglia and immune molecules in brain wiring. Among their many roles, microglia prune developing synapses and regulate synaptic plasticity and function. Here, we review and discuss how this emerging work may provide new insight into how disruptions in microglia-synapse interactions could contribute to synapse loss and dysfunction, and consequently cognitive impairment, in AD.


Subject(s)
Alzheimer Disease/immunology , Brain/immunology , Microglia/immunology , Neuronal Plasticity/immunology , Alzheimer Disease/genetics , Animals , Brain/metabolism , Disease Models, Animal , Genome-Wide Association Study , Humans , Microglia/metabolism , Neuronal Plasticity/genetics
18.
J Cell Biol ; 211(6): 1157-76, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26694839

ABSTRACT

Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = -0.86) and decreased ß-secretase processing of ß-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ → α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that ß- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Cell Membrane/metabolism , Models, Biological , Proteolysis , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , CHO Cells , Cells, Cultured , Cricetulus , Humans , Mice , Mice, Inbred C57BL
20.
J Neurosci ; 35(38): 13029-42, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26400934

ABSTRACT

The complement system is part of the innate immune response responsible for removing pathogens and cellular debris, in addition to helping to refine CNS neuronal connections via microglia-mediated pruning of inappropriate synapses during brain development. However, less is known about the role of complement during normal aging. Here, we studied the role of the central complement component, C3, in synaptic health and aging. We examined behavior as well as electrophysiological, synaptic, and neuronal changes in the brains of C3-deficient male mice (C3 KO) compared with age-, strain-, and gender-matched C57BL/6J (wild-type, WT) control mice at postnatal day 30, 4 months, and 16 months of age. We found the following: (1) region-specific and age-dependent synapse loss in aged WT mice that was not observed in C3 KO mice; (2) age-dependent neuron loss in hippocampal CA3 (but not in CA1) that followed synapse loss in aged WT mice, neither of which were observed in aged C3 KO mice; and (3) significantly enhanced LTP and cognition and less anxiety in aged C3 KO mice compared with aged WT mice. Importantly, CA3 synaptic puncta were similar between WT and C3 KO mice at P30. Together, our results suggest a novel and prominent role for complement protein C3 in mediating aged-related and region-specific changes in synaptic function and plasticity in the aging brain. Significance statement: The complement cascade, part of the innate immune response to remove pathogens, also plays a role in synaptic refinement during brain development by the removal of weak synapses. We investigated whether complement C3, a central component, affects synapse loss during aging. Wild-type (WT) and C3 knock-out (C3 KO) mice were examined at different ages. The mice were similar at 1 month of age. However, with aging, WT mice lost synapses in specific brain regions, especially in hippocampus, an area important for memory, whereas C3 KO mice were protected. Aged C3 KO mice also performed better on learning and memory tests than aged WT mice. Our results suggest that complement C3, or its downstream signaling, is detrimental to synapses during aging.


Subject(s)
Aging/pathology , Complement C3/deficiency , Hippocampus/pathology , Adaptation, Physiological/genetics , Age Factors , Animals , Complement C3/genetics , Conditioning, Psychological/physiology , Excitatory Postsynaptic Potentials/physiology , Exploratory Behavior/physiology , Fear , Hippocampus/metabolism , Hippocampus/ultrastructure , Male , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , Phosphopyruvate Hydratase/metabolism , Synapses/pathology , Synapses/ultrastructure , Synapsins/metabolism , Synaptophysin/metabolism , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...